
Implementation and Evaluation of Phase Synchronization of USRP devices
in GNU Radio / GRC Environment for Rapid Prototyping

Tomoya Nakahama, Yoji Yamada (NIT, Ishikawa College)
Suguru Kameda, Mizuki Motoyoshi, Noriharu Suematsu (RIEC, Tohoku University)

Experimental setup for 2-channel receiver using two USRPs

Typical Python code structure of 2-channel non-coherent receiver

Setting variables

Setting Blocks

Define connections

code execution

top_block.py

self.uhd_usrp_source_1 = uhd.usrp_source(
",".join(("addr=192.168.10.2", "")),
uhd.stream_args(

cpu_format="fc32",
channels=range(1),

),
)
self.uhd_usrp_source_1.set_clock_source('external', 0)
self.uhd_usrp_source_1.set_time_source('external', 0)
self.uhd_usrp_source_1.set_samp_rate(samp_rate)
self.uhd_usrp_source_1.set_time_unknown_pps(uhd.time_spec())
self.uhd_usrp_source_1.set_center_freq(freq, 0)
self.uhd_usrp_source_1.set_gain(0, 0)
self.uhd_usrp_source_1.set_antenna('RX2', 0)
self.uhd_usrp_source_0 = uhd.usrp_source(

",".join(("addr=192.168.10.6", "")),
uhd.stream_args(

cpu_format="fc32",
channels=range(1),

),
)
self.uhd_usrp_source_0.set_clock_source('external', 0)
self.uhd_usrp_source_0.set_time_source('external', 0)
self.uhd_usrp_source_0.set_samp_rate(samp_rate)
self.uhd_usrp_source_0.set_time_unknown_pps(uhd.time_spec())
self.uhd_usrp_source_0.set_center_freq(freq, 0)
self.uhd_usrp_source_0.set_gain(0, 0)
self.uhd_usrp_source_0.set_antenna('RX2', 0)

Fig.3 Python code structure generated by the GRC shown in Figure 2.

Setting the receive start time for each USRP

start_time = self.uhd_usrp_source_1.get_time_now() + uhd.time_spec(2)
self.uhd_usrp_source_1.set_start_time(start_time)
self.uhd_usrp_source_0.set_start_time(start_time+uhd.time_spec(1/200e3))

 The phase difference between 𝑟0𝐼(𝑛) and 𝑟1𝐼(𝑛) does not change from run to run as shown in Fig.6 (a).
 When the UHD timed-command is not used, the phase difference between 𝑟0𝐼(𝑛) and 𝑟1𝐼(𝑛) is not stable in each run, as shown

in Fig. 6 (b).
 The inherent delay of the USRP or daughterboard has been suggested as a cause of the remaining phase difference in Fig.6 (a).
 The stability of the phase difference in Fig.6 (a) will be investigated in the future.

Problem to be solved:
In spite of 10MHz Ref and PPS are supplied, USRP equipped with a
daughter board with a local oscillator (LO) cannot achieve channel-
to-channel synchronization of demodulated signals.

Problem to be solved:
In spite of 10MHz Ref and PPS are supplied, USRP equipped with a
daughter board with a local oscillator (LO) cannot achieve channel-
to-channel synchronization of demodulated signals.

Adding UHD timed-commands to the Python code
self.uhd_usrp_source_1 = uhd.usrp_source(

",".join(("addr=192.168.10.2", "")),
uhd.stream_args(

cpu_format="fc32",
channels=range(1),

),
)
self.uhd_usrp_source_1.set_clock_source('external', 0)
self.uhd_usrp_source_1.set_time_source('external', 0)
self.uhd_usrp_source_1.set_samp_rate(samp_rate)
self.uhd_usrp_source_1.set_time_unknown_pps(uhd.time_spec())
self.uhd_usrp_source_1.set_center_freq(freq, 0)
self.uhd_usrp_source_1.set_gain(0, 0)
self.uhd_usrp_source_1.set_antenna('RX2', 0)
self.uhd_usrp_source_0 = uhd.usrp_source(

",".join(("addr=192.168.10.6", "")),
uhd.stream_args(

cpu_format="fc32",
channels=range(1),

),
)
self.uhd_usrp_source_0.set_clock_source('external', 0)
self.uhd_usrp_source_0.set_time_source('external', 0)
self.uhd_usrp_source_0.set_samp_rate(samp_rate)
self.uhd_usrp_source_0.set_time_unknown_pps(uhd.time_spec())
self.uhd_usrp_source_0.set_center_freq(freq, 0)
self.uhd_usrp_source_0.set_gain(0, 0)
self.uhd_usrp_source_0.set_antenna('RX2', 0)

#setting mb time
self.uhd_usrp_source_1.set_time_next_pps(uhd.time_spec())
self.uhd_usrp_source_0.set_time_next_pps(uhd.time_spec())
time.sleep(1)
#setting start timing
cmd_time = self.uhd_usrp_source_1.get_time_now() + uhd.time_spec(1)
self.uhd_usrp_source_1.set_start_time(cmd_time+uhd.time_spec(2))
self.uhd_usrp_source_0.set_start_time(cmd_time+uhd.time_spec(2))
#Align LO's in the front-end
self.uhd_usrp_source_1.set_command_time(cmd_time)
self.uhd_usrp_source_0.set_command_time(cmd_time)
self.uhd_usrp_source_1.set_center_freq(freq, 0)
self.uhd_usrp_source_0.set_center_freq(freq, 0)
self.uhd_usrp_source_0.clear_command_time()
self.uhd_usrp_source_1.clear_command_time()

Deleting

Adding

 DSB-SC modulated M-sequence is received by the
implemented 2-channel coherent receiver.

 On one side of the USRP, set the receive start time
1/Fsb seconds later than the other USRP.

 Evaluate the cross-correlation between the
demodulated signals of each USRP.

STEP 2: By using set_start_time(), the receiving start time for each USRP
can be preprogrammed. This allows you to start receiving after aligning
the LOs.

STEP 2: By using set_start_time(), the receiving start time for each USRP
can be preprogrammed. This allows you to start receiving after aligning
the LOs.

Evaluation results of 2-channel coherent receiver implementation using UHD timed-commands

Align the system time of two USRPs

Basic GRC diagram of the 2-channel receiver

STEP 1: Set the same system time for two USRPs.STEP 1: Set the same system time for two USRPs.

Motivation
 Rapid prototyping with USRP and GNU Radio requires the following features:
 Synchronizing carrier frequency and channel phase
 Timing control of transmitting / receiving signals

 By default, two USRP equipped with a daughter board with a local oscillator (LO)
cannot achieve channel-to-channel synchronization even when 10MHz Ref and
PPS are supplied. This is still a major issue in rapid prototyping using USRPs[1-2].

 To solve this problem, we propose the use of UHD timed-commands[3] and GNU
Radio Companion (GRC) to synchronize the two USRPs.

Universal Software Radio Peripheral (USRP)
USRP Hardware Driver (UHD)

Pulse-per-second signal (PPS)

Summary and future plans
 On USRP N200 with SBX daughterboard (0.4 to 4.4GHz) and GNU Radio, we

proposed a two-channel coherent receiver implementation. This technique can
also be applied to transmitters and transceivers.

 Aligning LOs at the front end is executed only once at startup by using of UHD
timed-commands (UHD-Com).

 Because UHD-Com runs on FPGA, timing is controlled according to the accuracy of
the FPGA clock, and no customization of FPGA code is required.

 Evaluating the accuracy of inter-channel synchronization remains for future work.
 USRP X300 and SBX120 have not yet achieved inter-channel synchronization.

Et
h

er
n

et
Et

h
er

n
et

1
G

b
E

sw
it

ch

Main board

USRP N210

USRP N210

Tektronix
AFG3022B

OctoClock

PPS in

PPS in

10MHz REF in

10MHz REF in

Main board

GNU Radio 3.7.13.4
Ubuntu Linux 18.04

Baseband sampling frequency
𝐹𝑠𝑏 =200kHz

10 MHz sine wave 1Hz pulse duty cycle 10%

FPGA(NCO)

FPGA(NCO)

SBX daughter board

SBX daughter board

Anritsu
MG3700

Demodulated signal r(n)

Received signal r(t)

Carrrier frequency
𝐹𝑐 =920MHz

𝐹𝑡 =920.001MHz
Level -35dBm CW

Received signal r(t)

Numerically controlled oscillator (NCO) Voltage control oscillator (VCO)
Digital down converter (DDC)

NOTE: Added and reprinted from http://www.ni.com/tutorial/14705/ja/

Fig.1 2-channel receiver block diagram using two USRP N210 with a SBX daughter board.

Fsb as samp_rate = 200kHz
Fc as Center_Freq = 920MHz

Demodulated
signals r(n)

Fig.2 GRC block diagram of the two-channel receiver in Figure 1.

𝑟1(𝑛)

𝑟1𝑄(𝑛)

𝑟0𝐼(𝑛)

𝑟0𝑄(𝑛)

STEP 1 Align the system time of two USRPs
STEP 2 Set the receive start time for each USRP
STEP 3 Align LO phase at a specified time

STEP 1 Align the system time of two USRPs
STEP 2 Set the receive start time for each USRP
STEP 3 Align LO phase at a specified time

STEP 1STEP 1

STEP 2STEP 2

STEP 3STEP 3

Fig.4 Two USRP time setting operations using the set_time_next_pps () function.

USRP_Source_1

USRP_Source_0

PPS

USRP1

USRP0
system time

Fig.5 Verification test result of set_start_time() function.

Accurate one-
sample delay

LO in frontendLO in frontend

Numerically controlled oscillatorNumerically controlled oscillator

GNU Radio Companion (GRC)

References

STEP 3: By using UHD timed-commands, the phase relationship
between two USRPs remains fixed from run to run.
STEP 3: By using UHD timed-commands, the phase relationship
between two USRPs remains fixed from run to run.

(b) Demodulated signals for each run using GRC generated codes.(a) Demodulated signals for each run using UHD timed-commands.

Fig.6 Evaluation results of phase difference fluctuation of 𝑟0𝐼(𝑛) and 𝑟1𝐼(𝑛) for each run.

USRP1

USRP0

At some time,
set_time_next_pps()

is called.

At some time,
set_time_next_pps()

is called.
set_time_next_pps()

set the system time of USRP1
and USRP0 to zero when next
PPS is detected.

set_time_next_pps()
set the system time of USRP1
and USRP0 to zero when next
PPS is detected.

After calling
set_time_next_pps(), then
time.sleep(1) is called to
sleep for a second to make
sure all USRP time registers
latched and settled.

After calling
set_time_next_pps(), then
time.sleep(1) is called to
sleep for a second to make
sure all USRP time registers
latched and settled.

Result #2:Result #1: Result #1: Result #2:

[1]Dan Baker, "Phase Synchronization Techniques," GRCon 2019 at the Marriot at
the Space & Rocket Center in Huntsville, Alabama, Sept. 2019.

[2]M. Krueckemeier, F. Schwartau, C. Monka-Ewe and J. S. Technische,
"Synchronization of Multiple USRP SDRs for Coherent Receiver Applications,"
Proc. Sixth International Conference on Software Defined Systems, pp.11-16,
DOI: 10.1109/SDS.2019.8768634, June 2019.

[3]USRP Hardware Driver and USRP Manual,
https://files.ettus.com/manual/index.html

Verification
example

𝑟1𝐼(𝑛)

𝑟0(𝑛)

